- 1. Consider the following statements:
 - 1. f(x) = lnx is increasing in $(0, \infty)$
 - 2. $g(x) = e^x + e^{\frac{1}{x}}$ is decreasing in $(0, \infty)$

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 2. What is the derivative of $\sin^2 x$ with respect to $\cos^2 x$?
 - (a) -1
 - (b) 1
 - (c) sin2x
 - (d) cos2x
- 3. For what value of m with m < 0, is the area bounded by the lines y = x, y = mx and x = 2 equal to 3?
 - (a) $-\frac{1}{2}$
 - (b) -1
 - (c) $-\frac{3}{2}$
 - (d) -2
- 4. What is the derivative of $cosec(x^{\circ})$?
 - (a) $-\csc(x^{\circ})\cot(x^{\circ})$
 - (b) $-\frac{\pi}{180}$ cosec (x°) cot (x°)

- (c) $\frac{\pi}{180}$ cosec(x°) cot(x°)
- (d) $-\frac{\pi}{180}\operatorname{cosec}(x)\cot(x)$
- 5. A solution of the differential equation

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} = 0 \text{ is}$$

- (a) y = 2x
- (b) y = 2x + 4
- (c) $y = x^2 1$
- (d) $y = \frac{(x^2 2)}{2}$
- 6. If $f(x) = x^2 + 2$ and g(x) = 2x 3, then what is (fg)(1) equal to ?
 - (a) 3
 - (b) 1
 - (c) -2
 - (d) -3
- 7. What is the range of the function f(x) = x + |x| if the domain is the set of real numbers?
 - (a) (0, ∞)
 - (b) [0, ∞)
 - (c) (-∞, ∞)
 - (d) [1, ∞)

- 8. If $f(x) = x(4x^2 3)$, then what is $f(\sin \theta)$ equal to?
 - (a) $-\sin 3\theta$
 - (b) $-\cos 3\theta$
 - (c) $\sin 3\theta$
 - (d) $-\sin 4\theta$
- 9. What is $\lim_{x\to 5} \frac{5-x}{|x-5|}$ equal to ?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) Limit does not exist
- What is $\lim_{x\to 1} \frac{x^9-1}{x^3-1}$ equal to ?
 - (a) -1
 - (b) -3
 - (c) 3
 - (d) Limit does not exist
- Consider the following for the next three (03) items that follow:

Let $f(x) = Pe^x + Qe^{2x} + Re^{3x}$, where P, Q, R are real numbers. Further f(0) = 6, $f'(\ln 3) = 282$ and $\int_0^{\ln 2} f(x) dx = 11$

- (11) What is the value of Q?
 - (a) 1
 - (b) 2

- (c) 3
- (d) 4
- 12. What is the value of R?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 13. What is f'(0) equal to?
 - (a) 18
 - (b) 16
 - (c) 15
 - (d) 14

Consider the following for the next two (02) items that follow:

Suppose E is the differential equation representing family of curves $y^2 = 2cx + 2c\sqrt{c}$ where c is a positive parameter.

- 14. What is the order of the differential equation?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

- 15. What is the degree of the differential equation?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) Degree does not exist

Let
$$f(x) = \begin{vmatrix} \cos x & x & 1\\ 2\sin x & x^2 & 2x\\ \tan x & x & 1 \end{vmatrix}$$

- 16. What is f(0) equal to ?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2
- 17. What is $\lim_{x\to 0} \frac{f(x)}{x}$ equal to ?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2

- 18. What is $\lim_{x\to 0} \frac{f(x)}{x^2}$ equal to?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2

Consider the following for the next two (02) items that follow:

Let $f(x) = \sin[\pi^2]x + \cos[-\pi^2]x$ where [.] is a greatest integer function

- **19.** What is $f\left(\frac{\pi}{2}\right)$ equal to?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) 2
- **20.** What is $f\left(\frac{\pi}{4}\right)$ equal to ?
 - (a) $-\frac{1}{\sqrt{2}}$
 - (b) -1
 - (c) 1
 - (d) $\frac{1}{\sqrt{2}}$

7

Let
$$\Delta(a, b, c, \alpha) = \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix}$$

- 21. If $\Delta(a, b, c, \alpha) = 0$ for every $\alpha > 0$, then which one of the following is correct?
 - (a) a, b, c are in AP
 - (b) a, b, c are in GP
 - (c) a, 2b, c are in AP
 - (d) a, 2b, c are in GP
- 22. If $\Delta(7, 4, 2, \alpha) = 0$, then α is a root of which one of the following equations?

(a)
$$7x^2 + 4x + 2 = 0$$

(b)
$$7x^2 - 4x + 2 = 0$$

(c)
$$7x^2 + 8x + 2 = 0$$

(d)
$$7x^2 - 8x + 2 = 0$$

Consider the following for the next two (02) items that follow:

Given that $m(\theta) = \cot^2 \theta + n^2 \tan^2 \theta + 2n$, where *n* is a fixed positive real number.

- 23. What is the least value of $m(\theta)$?
 - (a) n
 - (b) 2n

- (c) 3n
- (d) 4n
- **24.** Under what condition does *m* attain the least value?

(a)
$$n = \tan^2 \theta$$

(b)
$$n = \cot^2 \theta$$

(c)
$$n = \sin^2 \theta$$

(d)
$$n = \cos^2 \theta$$

Consider the following for the next two (02) items that follow:

A quadrilateral is formed by the lines x = 0, y = 0, x + y = 1 and 6x + y = 3.

25. What is the equation of diagonal through origin?

(a)
$$3x + y = 0$$

(b)
$$2x + 3y = 0$$

(c)
$$3x - 2y = 0$$

(d)
$$3x + 2y = 0$$

26. What is the equation of other diagonal?

(a)
$$x + 2y - 1 = 0$$

(b)
$$x - 2y - 1 = 0$$

(c)
$$2x + y + 1 = 0$$

(d)
$$2x + y - 1 = 0$$

P(x, y) is any point on the ellipse $x^2 + 4y^2 = 1$. Let E, F be the foci of the ellipse.

27. What is PE + PF equal to?

- (a) 1
- (b) 2
- (c) 3
- (d) 4

28. Consider the following points:

$$1.\left(\frac{\sqrt{3}}{2},\,0\right)$$

$$2.\left(\frac{\sqrt{3}}{2},\,\frac{1}{4}\right)$$

$$3.\left(\frac{\sqrt{3}}{2},\,-\frac{1}{4}\right)$$

Which of the above points lie on latus rectum of ellipse?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Consider the following for the next two (02) items that follow:

The line y = x partitions the circle $(x-a)^2 + y^2 = a^2$ in two segments.

29. What is the area of minor segment?

(a)
$$\frac{(\pi-2)a^2}{4}$$

(b)
$$\frac{(\pi-1)a^2}{4}$$

(c)
$$\frac{(\pi-2)a^2}{2}$$

(d)
$$\frac{(\pi-1)a^2}{2}$$

30. What is the area of major segment?

(a)
$$\frac{(3\pi-2)a^2}{4}$$

(b)
$$\frac{(3\pi+2)a^2}{4}$$

(c)
$$\frac{(3\pi-2)a^2}{2}$$

(d)
$$\frac{(3\pi+2)a^2}{2}$$

31 Consider the following frequency distribution:

x	1	2	3	5
f	4	6	9	7

What is the value of median of the distribution?

- (a) 1
- (b) 2
- (c) 3
- (d) 3.5

- 32. For data -1, 1, 4, 3, 8, 12, 17, 19, 9, 11; if M is the median of first 5 observations and N is the median of last five observations, then what is the value of 4M N?
 - (a) 7
 - (b) 4
 - (c) 1
 - (d) 0
- 33. Let P, Q, R represent mean, median and mode. If for some distribution $5P = 4Q = \frac{R}{2}$, then what is $\frac{P+Q}{2P+0.7R}$ equal to?
 - (a) $\frac{1}{12}$
 - (b) $\frac{1}{7}$
 - (c) $\frac{2}{9}$
 - (d) $\frac{1}{4}$
- 34. If G is the geometric mean of numbers $1, 2, 2^2, 2^3, \ldots, 2^{n-1}$, then what is the value of $1 + 2\log_2 G$?
 - (a) 1
 - (b) 4
 - (c) n-1
 - (d) n

- 35. If H is the harmonic mean of numbers 1, 2, 2^2 , 2^3 , . . . , 2^{n-1} , then what is n/H equal to ?
 - (a) $2 \frac{1}{2^{n+1}}$
 - (b) $2 \frac{1}{2^{n-1}}$
 - (c) $2 + \frac{1}{2^{n-1}}$
 - (d) $2 \frac{1}{2^n}$
- 36. Let P be the median, Q be the mean and R be the mode of observations $x_1, x_2, x_3, \ldots x_n$. Let $S = \sum_{i=1}^n (2x_i a)^2$. S takes minimum value, when a is equal to
 - (a) P
 - (b) $\frac{Q}{2}$
 - (c) 2Q
 - (d) R
- 37 One bag contains 3 white and 2 black balls, another bag contains 2 white and 3 black balls. Two balls are drawn from the first bag and put it into the second bag and then a ball is drawn from the second bag. What is the probability that it is white?
 - (a) $\frac{6}{7}$
 - (b) $\frac{33}{70}$
 - (c) $\frac{3}{10}$
 - (d) $\frac{1}{70}$

- 38. Three dice are thrown. What is the probability that each face shows only multiples of 3?
 - (a) $\frac{1}{9}$
 - (b) T
 - (c) $\frac{1}{27}$
 - (d) $\frac{1}{3}$
 - 39. What is the probability that the month of December has 5 Sundays?
 - (a) 1
 - (b) $\frac{1}{4}$
 - (c) $\frac{3}{7}$
 - (d) $\frac{2}{7}$
 - **40.** A natural number n is chosen from the first 50 natural numbers. What is the probability that $n + \frac{50}{n} < 50$?
 - (a) $\frac{23}{25}$
 - (b) $\frac{47}{50}$
 - (c) $\frac{24}{25}$
 - (d) $\frac{49}{50}$

- 41 How many real numbers satisfy the equation |x-4|+|x-7|=15?
 - (a) Only one
 - (b) Only two
 - (c) Only three
 - (d) Infinitely many
- 42. A mapping $f: A \to B$ defined as $f(x) = \frac{2x+3}{3x+5}$, $x \in A$. If f is to be onto, then what are A and B equal to ?
 - (a) $A = R \setminus \{-\frac{5}{3}\}$ and $B = R \setminus \{-\frac{2}{3}\}$
 - (b) A = R and $B = R \setminus \{-\frac{5}{3}\}$
 - (c) $A = R \setminus \{-\frac{3}{2}\}$ and $B = R \setminus \{0\}$
 - (d) $A = R \setminus \{-\frac{5}{3}\}$ and $B = R \setminus \{\frac{2}{3}\}$
- 43. α and β are distinct real roots of the quadratic equation $x^2 + ax + b = 0$. Which of the following statements is/are sufficient to find α ?

1.
$$\alpha + \beta = 0$$
, $\alpha^2 + \beta^2 = 2$

2.
$$\alpha \beta^2 = -1$$
, $a = 0$

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only .
- (c) Both 1 and 2
- (d) Neither 1 nor 2

44. If the sixth term in the binomial ex-

pansion of $\left(x^{\frac{-8}{3}} + x^2 \log_{10} x\right)^8$ is 5600,

- then what is the value of x?
- (a) 6
- (b) 8
- (c) 9
- (d) 10
- 45. How many terms are there in the expansion of $(3x-y)^4(x+3y)^4$?
 - (a) 9
 - (b) 12
 - (c) 15
 - (d) 17
- **46.** p, q, r and s are in AP such that p+s=8 and qr=15. What is the difference between largest and smallest numbers?
 - (a) 6
 - (b) 5
 - (c) 4
 - (d) 3
- 37. Consider the following statements for a fixed natural number n:
 - 1. C(n, r) is greatest if n = 2r
 - 2. C(n, r) is greatest if n = 2r 1 and n = 2r + 1

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 48 m parallel lines cut n parallel lines giving rise to 60 parallelograms. What is the value of (m+n)?
 - (a) 6
 - (b) 7
 - (c) 8
 - (d) 9
- Let x be the number of permutations of the word 'PERMUTATIONS' and y be the number of permutations of the word 'COMBINATIONS'. Which one of the following is correct?
 - (a) x = y
 - (b) y = 2x
 - (c) x = 4y
 - (d) y = 4x
 - 50. 5-digit numbers are formed using the digits 0, 1, 2, 4, 5 without repetition. What is the percentage of numbers which are greater than 50,000?
 - (a) 20%
 - (b) 25%
 - (c) $\frac{100}{3}$ %
 - (d) $\frac{110}{3}$ %

- 51. If $2-i\sqrt{3}$ where $i=\sqrt{-1}$ is a root of the equation $x^2+ax+b=0$, then what is the value of (a+b)?
 - (a) -11
 - (b) -3
 - (c) 0
 - (d) 3
- 52. If $z = \frac{1 + i\sqrt{3}}{1 i\sqrt{3}}$ where $i = \sqrt{-1}$, then what is the argument of z?
 - (a) $\frac{\pi}{3}$
 - (b) $\frac{2\pi}{3}$
 - (c) $\frac{4\pi}{3}$
 - (d) $\frac{5\pi}{6}$
- 53. If a, b, c are in AP, then what is

$$\begin{vmatrix} x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+3 \end{vmatrix}$$
 equal to ?

- (a) -1
- (b) 0
- (c) 1
- (d) 2

- 54. If $log_x a$, a^x and $log_b x$ are in GP, then what is x equal to ?
 - (a) $log_a(log_ba)$
 - (b) $log_b(log_ab)$
 - (c) $\frac{\log_a(\log_b a)}{2}$
 - (d) $\frac{\log_b(\log_a b)}{2}$
- 55. If $2^{\frac{1}{c}}$, $2^{\frac{b}{ac}}$, $2^{\frac{1}{a}}$ are in GP, then which one of the following is correct?
 - (a) a, b, c are in AP
 - (b) a, b, c are in GP
 - (c) a, b, c are in HP
 - (d) ab, bc, ca are in AP
 - 56. The first and the second terms of an AP are $\frac{5}{2}$ and $\frac{23}{12}$ respectively. If n^{th} term is the largest negative term, what is the value of n?
 - (a) 5
 - (b) 6
 - (c) 7
 - (d) n cannot be determined
 - 57. For how many integral values of k, the equation $x^2 4x + k = 0$, where k is an integer has real roots and both of them lie in the interval (0, 5)?
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6

- 58. In an AP, the first term is x and the sum of the first n terms is zero. What is the sum of next m terms?
 - (a) $\frac{mx(m+n)}{n-1}$
 - (b) $\frac{mx(m+n)}{1-n}$
 - (c) $\frac{nx(m+n)}{m-1}$
 - (d) $\frac{nx(m+n)}{1-m}$

59. Consider the following statements:

- 1. (25)! + 1 is divisible by 26
- 2. (6)! + 1 is divisible by 7

Which of the above statements is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

60. If z is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then what is |z| equal to ?

- (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$
- (c) 1
- (d) 2

61. If ω is a non-real cube root of 1, then

what is the value of $\left| \frac{1-\omega}{\omega + \omega^2} \right|$?

- (a) $\sqrt{3}$
- (b) $\sqrt{2}$
- (c) 1
- (d) $\frac{4}{\sqrt{3}}$

62. What is the number of 6-digit numbers that can be formed only by using 0, 1, 2, 3, 4 and 5 (each once); and divisible by 6?

- (a) 96
- (b) 120
- (c) 192
- (d) 312

63. What is the binary number equivalent to decimal number 1011?

- (a) 1011
- (b) 111011
- (c) 11111001
- (d) 111110011

64. Let A be a matrix of order 3×3 and |A| = 4. If $|2 \operatorname{adj}(3A)| = 2^{\alpha}3^{\beta}$, then what is the value of $(\alpha + \beta)$?

- (a) 12
- (b) 13
- (c) 17
- (d) 24

65. If α and β are the distinct roots of equation $x^2 - x + 1 = 0$, then what is the

value of
$$\left| \frac{\alpha^{100} + \beta^{100}}{\alpha^{100} - \beta^{100}} \right|$$
?

- (a) $\sqrt{3}$
- (b) √2
- (c) 1
- (d) $\frac{1}{\sqrt{3}}$
- 66. Let A and B be symmetric matrices of same order, then which one of the following is correct regarding (AB BA)?
 - Its diagonal entries are equal but nonzero
 - 2. The sum of its non-diagonal entries is zero

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 67. Consider the following statements in respect of square matrices A, B, C each of same order n:
 - 1. $AB = AC \implies B = C$ if A is non-singular
 - 2. If BX = CX for every column matrix X having n rows then B = C

- (a) 1 only
- 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 68. The system of linear equations x+2y+z=4, 2x+4y+2z=8 and 3x+6y+3z=10 has
 - (a) a unique solution
 - (b) infinite many solutions
 - (c) no solution
 - (d) exactly three solutions
- 69. Let AX = B be a system of 3 linear equations with 3-unknowns. Let X_1 and X_2 be its two distinct solutions. If the combination $aX_1 + bX_2$ is a solution of AX = B; where a, b are real numbers, then which one of the following is correct?
 - (a) a = b
 - (b) a + b = 1
 - (c) a + b = 0
 - (d) a b = 1

70. What is the sum of the roots of the

equation
$$\begin{vmatrix} 0 & x-a & x-b \\ 0 & 0 & x-c \\ x+b & x+c & 1 \end{vmatrix} = 0?$$

- (a) a + b + c
- (b) a b + c
- (c) a + b c
- (d) a b c

Consider the following for the next two (02) items that follow:

Let A(1, -1, 2) and B(2, 1, -1) be the end points of the diameter of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz - 1 = 0.$

- 71. What is u + v + w equal to?
 - (a) -2
 - (b) -1
 - (c) 1
 - (d) 2
 - 72. If P(x, y, z) is any point on the sphere, then what is $PA^2 + PB^2$ equal to?
 - (a) 15
 - (b) 14
 - (c) 13
 - (d) 6.5

- Consider the following for the next two (02) items that follow:
- Consider two lines whose direction ratios are (2, -1, 2) and (k, 3, 5). They are inclined at an angle $\frac{\pi}{4}$.

 $\sqrt{3}$. What is the value of k?

- (a) 4
- (b) 2
- (c) 1
- (d) -1
- 74. What are the direction ratios of a line which is perpendicular to both the lines?
 - (a) (1, 2, 10)
 - (b) (-1, -2, 10)
 - (c) (11, 12, -10)
 - (d) (11, 2, -10)

Consider the following for the next two (02) items that follow:

Let $\vec{a} = 3\hat{i} + 3\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{j} - \hat{k}$. Let \vec{b} be such that $\vec{a} \cdot \vec{b} = 27$ and $\vec{a} \times \vec{b} = \vec{9}\vec{c}$

 $\sqrt{35}$. What is \overrightarrow{b} equal to ?

- (a) $3\hat{i} + 4\hat{j} + 2\hat{k}$
- (b) $5\hat{i} + 2\hat{j} + 2\hat{k}$
- (c) $5\hat{i} 2\hat{j} + 6\hat{k}$
- (d) $3\hat{i} + 3\hat{j} + 4\hat{k}$

- 76. What is the angle between $(\vec{a} + \vec{b})$ and \vec{c} ?
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{\pi}{3}$
 - (c) $\frac{\pi}{4}$
 - (d) $\frac{\pi}{6}$

Let a vector $\vec{a} = 4\hat{i} - 8\hat{j} + \hat{k}$ make angles α , β , γ with the positive directions of x, y, z axes respectively.

 $\sqrt{37}$. What is $\cos \alpha$ equal to?

- (a) $\frac{1}{3}$
- (b) $\frac{4}{9}$
- (c) $\frac{5}{9}$
- (d) $\frac{2}{3}$

18. What is $\cos 2\beta + \cos 2\gamma$ equal to?

- (a) $-\frac{32}{81}$
 - (b) $-\frac{16}{81}$

- (c) $\frac{16}{81}$
- (d) $\frac{32}{81}$

Consider the following for the next two (02) items that follow:

The position vectors of two points A and B are $\hat{i} - \hat{j}$ and $\hat{j} + \hat{k}$ respectively.

79. Consider the following points:

- 1. (-1, -3, 1)
- 2. (-1, 3, 2)
- 3. (-2, 5, 3)

Which of the above points lie on the line joining A and B?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

80. What is the magnitude of \overrightarrow{AB} ?

- (a) 2
- (b) 3
- (c) √6
- (d) $\sqrt{3}$

- 81. The mean and variance of five observations are 14 and 13.2 respectively. Three of the five observations are 11, 16 and 20. What are the other two observations?
 - (a) 8 and 15
 - (b) 9 and 14
 - (c) 10 and 13
 - (d) 11 and 12
 - 82. Let A and B be two independent events such that

$$P(\overline{A}) = 0.7$$
, $P(\overline{B}) = k$, $P(A \cup B) = 0.8$.
What is the value of k ?

- (a) $\frac{5}{7}$
- (b) $\frac{4}{7}$
- (c) $\frac{2}{7}$
- (d) $\frac{1}{7}$
- 83. A biased coin with the probability of getting head equal to \(\frac{1}{4}\) is tossed five times. What is the probability of getting tail in all the first four tosses followed by head?
 - (a) $\frac{81}{512}$
 - (b) $\frac{81}{1024}$

- (c) $\frac{81}{256}$
- (d) $\frac{27}{1024}$
- 84. A coin is biased so that heads comes up thrice as likely as tails. In four independent tosses of the coin, what is probability of getting exactly three heads?
 - (a) $\frac{81}{256}$
 - (b) $\frac{27}{64}$
 - (c) $\frac{27}{256}$
 - (d) $\frac{9}{256}$
- 85. Let X and Y be two random variables such that X + Y = 100. If X follows Binomial distribution with parameters n = 100 and $p = \frac{4}{5}$, what is the variance of Y?
 - (a) 1
 - (b) $\frac{1}{2}$
 - (c) 16
 - (d) $\frac{1}{16}$

- 86. If two lines of regression are x+4y+1=0 and 4x+9y+7=0, then what is the value of x when y=-3?
 - (a) -13
 - (b) -5
 - (c) 5
 - (d) 7
 - 87. The central angles p, q, r and s (in degrees) of four sectors in a Pie Chart satisfy the relation 9p = 3q = 2r = 6s. What is the value of 4p q?
 - (a) 12
 - (b) 24
 - (c) 30
 - (d) 36
 - 88. The observations 4, 1, 4, 3, 6, 2, 1, 3, 4, 5, 1, 6 are outputs of 12 dices thrown simultaneously. If m and M are means of lowest 8 observations and highest 4 observations respectively, then what is (2m + M) equal to?
 - (a) 10
 - (b) 12
 - (c) 17
 - (d) 21
 - 89. A bivariate data set contains only two points (-1, 1) and (3, 2). What will be the line of regression of y on x?
 - (a) x 4y + 5 = 0
 - (b) 3x + 2y 1 = 0

- (c) x + 4y + 1 = 0
- (d) 5x-4y+1=0
- 90. A die is thrown 10 times and obtained the following outputs:

What will be the mode of data so obtained?

- (a) 6
- (b) 4
- (c) 2
- (d) 1

Consider the following for the next three (03) items that follow:

Let
$$I_1 = \int_0^{\pi} \frac{x}{1 + \cos^2 x} dx$$
 and $I_2 = \int_0^{\pi} \frac{1}{1 + \sin^2 x} dx$

91. What is the value of $\frac{I_1 + I_2}{I_1 - I_2}$?

- (a) 1
- (b) π
- (c) π²
- (d) $\frac{\pi+1}{\pi-1}$

- 92. What is the value of $8I_1^2$?
 - (a) π
 - (b) π^2
 - (c) π^{3}
 - (d) π⁴
 - 93. What is the value of I_2 ?
 - (a) $\frac{\pi}{\sqrt{2}}$
 - (b) $\frac{\pi}{2\sqrt{2}}$
 - (c) $\frac{3\pi}{2\sqrt{2}}$
 - (d) $\frac{\pi}{4\sqrt{2}}$

Let
$$l = \int_a^b \frac{|x|}{x} dx$$
, $a < b$

- 94. What is l equal to when a < 0 < b?
 - (a) a+b
 - (b) a-b
 - (c) b-a
 - (d) $\frac{(a+b)}{2}$

- -95. What is l equal to when a < b < 0?
 - (a) a+b
 - (b) a-b
 - (c) b-a
 - (d) $\frac{(a+b)}{2}$

'Consider the following for the next three (03)' items that follow:

Let
$$f(x) = |lnx|, x \neq 1$$

96. What is the derivative of f(x) at x = 0.5?

- (a) -2
- (b) -1
- (c) 1
- (d) 2

97. What is the derivative of f(x) at x = 2?

- (a) $-\frac{1}{2}$
- (b) -1
- (c) $\frac{1}{2}$
- (d) 2

- 98. What is the derivative of $f \circ f(x)$, where 1 < x < 2?
 - (a) $\frac{1}{lnx}$
 - (b) $\frac{1}{x \ln x}$
 - (c) $-\frac{1}{\ln x}$
 - (d) $-\frac{1}{x \ln x}$

Let
$$f(x) = \begin{cases} x+6, & x \le 1 \\ px+q, & 1 < x < 2 \\ 5x, & x \ge 2 \end{cases}$$

and f(x) is continuous

- 99. What is the value of p?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
- 100. What is the value of q?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5

Consider the following for the next two (02) items that follow:

Consider the function

$$f(x) = |x-2| + |3-x| + |4-x|$$
, where $x \in R$.

101. At what value of x does the function attain minimum value?

- (a) 2
- (b) 3
- (c) 4
- (d) 0

102. What is the minimum value of the function?

- (a) 2
- (b) 3
- (c) 4
- (d) 0

Consider the following for the next two (02) items that follow:

Consider the sum $S = 0! + 1! + 2! + 3! + 4! + \dots + 100!$

103. If the sum S is divided by 8, what is the remainder?

- (a) 0
- (b) 1
- (c) 2
- (d) Cannot be determined

- 104. If the sum S is divided by 60, what is
 - (a) 1
 - (b) 3
 - (c) 17
 - (d) 34

In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the in-circle of the triangle touches the sides PQ, QR and RP at N, L and M respectively such that the lengths PN, QL and RM are n, n+2, n+4 respectively where n is an integer.

105. What is the value of n?

- (a) 4
- (b) 6
- (c) 8
- (d) 10

106. What is the length of the smallest side?

- (a) 12
- (b) 14
- (c) 16
- (d) 18

Consider the following for the next two (02) items that follow:

Given that

 $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7$

107. The given equation can be reduced to

- (a) $\sin^2 2x 44 \sin 2x + 36 = 0$
- (b) $\sin^2 2x + 44 \sin 2x 36 = 0$
- (c) $\sin^2 2x 22\sin 2x + 18 = 0$
- (d) $\sin^2 2x + 22\sin 2x 18 = 0$

108. If $\sin 2x = a - b\sqrt{c}$, where a and b are natural numbers and c is prime number, then what is the value of a - b + 2c?

- (a) 0
- (b) 14
- (c) 21
- (d) 28

Consider the following for the next two (02) items that follow:

A quadratic equation is given by $(3+2\sqrt{2})x^2 - (4+2\sqrt{3})x + (8+4\sqrt{3}) = 0$

- 109. What is the HM of the roots of the equation?
 - (a) 2
 - (b) 4
 - (c) 2√2
 - (d) $2\sqrt{3}$

110. What is the GM of the roots of the equation?

(a)
$$\sqrt{2}(\sqrt{6}-\sqrt{3}+\sqrt{2}-1)$$

(b)
$$\sqrt{2}(\sqrt{6}+\sqrt{3}-\sqrt{2}-1)$$

(c)
$$(\sqrt{6} - \sqrt{3} + \sqrt{2} - 1)$$

(d)
$$(\sqrt{6} + \sqrt{3} + \sqrt{2} - 1)$$

Consider the following for the next two (02) items that follow:

Let $\sin\beta$ be the GM of $\sin\alpha$ and $\cos\alpha$; $\tan\gamma$ be the AM of $\sin\alpha$ and $\cos\alpha$.

- 111. What is $\cos 2\beta$ equal to?
 - (a) $(\cos\alpha \sin\alpha)^2$
 - (b) $(\cos\alpha + \sin\alpha)^2$
 - (c) $(\cos\alpha \sin\alpha)^3$
 - (d) $\frac{(\cos\alpha \sin\alpha)^2}{2}$
- 112. What is the value of $\sec 2\gamma$?
 - (a) $\frac{3-\sin 2\alpha}{5+2\sin 2\alpha}$
 - (b) $\frac{5+\sin 2\alpha}{3-\sin 2\alpha}$
 - (c) $\frac{3-2\sin 2\alpha}{4+\sin 2\alpha}$
 - (d) $\frac{3-\sin 2\alpha}{4+3\sin 2\alpha}$

Consider the following for the next two (02) items that follow:

A flagstaff 20 m long standing on a pillar 10 m high subtends an angle $\tan^{-1}(0.5)$ at a point P on the ground. Let θ be the angle subtended by the pillar at this point P.

- 113. If x is the distance of P from bottom of the pillar, then consider the following statements:
 - x can take two values which are in the ratio 1:3
 - x can be equal to height of the flagstaff

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 114. What is a possible value of $\tan \theta$?
 - (a) $\frac{3}{4}$
 - (b) $\frac{2}{3}$
 - (c) $\frac{1}{3}$
 - (d) $\frac{1}{4}$

The perimeter of a triangle ABC is 6 times the AM of sine of angles of the triangle. Further $BC = \sqrt{3}$ and CA = 1.

115. What is the perimeter of the triangle?

- (a) $\sqrt{3} + 1$
- (b) $\sqrt{3}+2$
- (c) $\sqrt{3} + 3$
- (d) $2\sqrt{3}+1$

116. Consider the following statements:

- 1. ABC is right angled triangle
- 2. The angles of the triangle are in AP

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

Consider the following for the next two (02) items that follow:

Let
$$x = \frac{\sin^2 A + \sin A + 1}{\sin A}$$
 where $0 < A \le \frac{\pi}{2}$

117. What is the minimum value of x?

- (a) 1
- (b) 2

- (c) 3
- (d) 4

118. At what value of A does x attain the minimum value?

- (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{4}$
- (c) $\frac{\pi}{3}$
- (d) $\frac{\pi}{2}$

Consider the following for the next two (02) items that follow:

In the triangle ABC,

$$a^2 + b^2 + c^2 = ac + \sqrt{3}bc$$

119. What is the nature of the triangle?

- (a) Equilateral
- (b) Isosceles
- (c) Right angled triangle
- (d) Scalene but not right angled

120. If c=8, what is the area of the triangle?

- (a) $4\sqrt{3}$
- (b) $6\sqrt{3}$
- (c) 8√3
- (d) 12√3