1. If $\mathrm{a}: \mathrm{b}: \mathrm{c}: \mathrm{d}=\sqrt{4}: \sqrt{3}: \sqrt{2}: \sqrt{1}$, then what is the value of $\frac{\left(-a^{2}+b^{2}+c^{2}+d^{2}\right)}{\left(a^{2}-b^{2}+c^{2}-d^{2}\right)}$?
(a) 1
(b) 2
(c) β
(d) 6
2. The speeds of four cars are $2 u, 3 u, 4 u$ and $x u$ and the time taken by them to cover the same distance is $x t, 4 t, 3 t$ and $2 t$ respectively, where $\mathrm{x}, \mathrm{u}, \mathrm{t}$ are real numbers. What is the value of x ?
(a) 8
(b) 6
(c) 5
(d) 2
3. If $\mathrm{m}: \mathrm{n}=1: 2$ and $\mathrm{p}: \mathrm{q}=3: 4$, then what is $(2 m+4 p):(n+3 q)$ equal to ?
(a) $1: 1$
(b) $1: 3$
(c) $2: 1$
(d) $2: 3$
4. If the rate of interest is 5%, then what would be the difference between compound interest and simple interest received on ₹ 10,000 (each) after 3 years from now?
(a) ₹ $175 \cdot 25$
(b) ₹ $152 \cdot 25$
(c) ₹ $76 \cdot 25$
(d) ₹ $24 \cdot 25$
5. A person bought a book at $3 / 4^{\text {th }}$ of its listed price and sold it at 50% more than its listed price. What is the percentage of gain in the transaction?
(a) 20%
(b) 40%
(c) 75%
(d) 100%
6. If the difference between the interior and exterior angles of a regular polygon is 144°, then what is the number of sides of the polygon?
(a) 12
(b) 16
(c) 18
(d) 20
7. If the sum and product of the roots of a quadratic equation are 2 and -100 respectively, then which one of the following is correct?
(a) There are infinitely many such equations having different roots.
(b) There is only one such equation which is $\mathrm{x}^{2}+2 \mathrm{x}-100=0$.
(c) There is only one such equation which is $\mathrm{x}^{2}-2 \mathrm{x}-100=0$.
(d) There is no such equation.
8. If 2 is a zero of the polynomial $p(x)=x^{3}+3 x^{2}-6 x-a$, then what is the sum of the squares of the other zeros of the polynomial?
(a) 10
(b) 17
(c) 21
(d) 37
9. If $t=\cos 79^{\circ}$, then what is $\operatorname{cosec} 79^{\circ}\left(1-\cos 79^{\circ}\right)$ equal to ?
(a) $\sqrt{\frac{1+\mathrm{t}}{1-\mathrm{t}}}$
(b) $\frac{\mathrm{t}}{\sqrt{1-\mathrm{t}^{2}}}$
(c) $\frac{\sqrt{1-\mathrm{t}^{2}}}{\mathrm{t}}$
(d) $\sqrt{\frac{1-\mathrm{t}}{1+\mathrm{t}}}$
10. Suppose $p(x)=x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and $\mathrm{q}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{b}_{3} \mathrm{x}^{3}+\mathrm{b}_{2} \mathrm{x}^{2}+\mathrm{b}_{1} \mathrm{x}+\mathrm{b}_{0}$ are the polynomials. If $\alpha, \beta, \gamma, \delta$ are zeros of $p(x)$ and $\alpha, \beta, \gamma, \lambda$ are zeros of $q(x)$, then what is $\frac{p(x)-q(x)}{(x-\alpha)(x-\beta)(x-\gamma)}$ equal to?
(a) $-\lambda+\delta$
(b) $\lambda-\delta$
(c) $\lambda+\delta$
(d) $-\lambda-\delta$
11. If the equation $x \cos \theta=x^{2}+p$ has a real solution for every θ where $0 \leq \theta \leq \frac{\pi}{4}$, then which one of the following is correct?
(a) $\mathrm{p}=1 / 8$
(b) $\mathrm{p} \leq 1 / 8$
(c) $\mathrm{p} \geq 1 / 8$
(d) $\mathrm{p} \leq 1 / 4$
12. What is the difference between the greatest value and the least value of $\cos ^{2} \theta+3 \sin ^{2} \theta+2$?
(a) 4
(b) 3
(c) 2
(d) 1

BCrack
13. $A B C$ is a right-angled triangle, right-angled at B such that $A B=6 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$. What is the perimeter of the square inscribed in the triangle ABC with maximum area?
(a) $24 / 7 \mathrm{~cm}$
(b) $96 / 7 \mathrm{~cm}$
(c) 24 cm
(d) 32 cm
14. What is the greatest value of k for which $2 x^{2}-4 x+k=0$ has real roots?
(a) 1
(b) 2
(c) 3
(d) 4
15. Consider the following data :
$110,41,43,95,127,99,61,92,71,93,110,36$. If 93 is replaced by 94 , then consider the following statements :

1. The difference between new median and old median is 1 .
2. The difference between new mean and old mean is less than $0 \cdot 1$.
3. The difference between new mode and old mode is zero.

Which of the statements given above are correct?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
16. What is the digit at the $100^{\text {th }}$ place of number $(225)^{40}$?
(a) 6
(b) 5
(c) 4
(d) 2
17. If a, b, c, d are natural numbers, then how many possible remainders are there when $1^{\mathrm{a}}+2^{\mathrm{b}}+3^{\mathrm{c}}+4^{\mathrm{d}}$ is divided by 10 ?
(a) 3
(b) 4
(c) 5
(d) 6
18. If n is a natural number, then what is the sum of all distinct remainders of $4^{n}+6^{n}+9^{n}+11^{n}$ when divided by 10 for various values of n ?
(a) 3
(b) 4
(c) 6
(d) 7
19. When the number (12345678910111213 ... 99100) is divided by 16 , what will be the remainder ?
(a) 15
(b) 12

(d) 3
20. A, B, C, D can complete a work in 3, 6, 9, 12 hours respectively. Further, only one person can work at a time in each hour and nobody can work for two consecutive hours. It is not necessary to engage all. What is the minimum number of hours that they will take to finish the work?
(a) $36 / 25$
(b) $12 / 5$
(c) 4
(d) 2
21. If $\mathrm{p}=\sqrt[3]{\left(\mathrm{a}+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{3}}\right)}+\sqrt[3]{\left(\mathrm{a}-\sqrt{\mathrm{a}^{2}+\mathrm{b}^{3}}\right)}$, then what is $p^{3}+3 b p$ equal to ?
(a) $-2 a$
(b) a
(c) 2 a
(d) 3 a
22. A plank of wood 4.25 m long and 3.4 m wide is to be cut into square pieces of equal size. How many square pieces of largest size can be cut from the plank, if no wastage is allowed ?
(a) 45
(b) 90
(c) 400
(d) 500
23. What is the HCF of $x^{4}-13 x^{2} y^{2}-300 y^{4}$, $x^{3}-4 x^{2} y-4 x y^{2}-5 y^{3}$ and $x^{3}-125 y^{3} ?$
(a) $x-5 y$
(b) $x+5 y$
(c) $x^{2}+5 x y+25 y^{2}$
(d) 1
24. If HCF of 768 and $x^{6} y^{2}$ is $32 x y$ for natural numbers $x \geq 2, y \geq 2$, then what is the value of $(x+y) ?$
(a) 5
(b) 7
(c) 9
(d) 11
25. What is the smallest natural number n such that $(n+1) \times n \times(n-1) \times(n-2) \times \ldots 3 \times 2 \times 1$ is divisible by 910 ?
(a) 91
(b) 90
(c) 13
(d) 12
26. The expression $555^{777}+777^{555}$ is divisible by which of the following?

1. 2
2. 3
3. 37

Select the correct answer using the code given below :
(a) 1 and 2 only

5:C (b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
27. Consider the following statements:

1. If $\left(3 m^{3}+2 m^{2}+5 m+n\right) / m$ is not an integer, where m and n are integers, then n is not divisible by m .
2. $5\left(8^{\mathrm{m}}\right)+2^{3 \mathrm{~m}}$ is divisible by 48 for all whole numbers m .
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
3. The sum of two positive numbers is 40 . If the GM of these two numbers is lower than their AM by 20%, then what is the difference between the two numbers?
(a) 12
(b) 18
(c) 24
(d) 28
4. 50 men can complete a work in 40 days. They begin the work together but a batch of 5 men left after each period of 10 days. What is the time to complete the work?
(a) 45 days
(b) 50 days
(c) 55 days
(d) 60 days
5. If $\mathrm{x}=\frac{1}{2+\frac{3}{4+\frac{5}{6+\frac{7}{8+\frac{9}{10}}}}}$,
then which one of the following is correct?
(a) $0<x<0.5$
(b) $x=0.5$
(c) $0.5<x<1.0$
(d) $x>1.0$
6. A bottle contains spirit and water in the ratio 1:4 and another identical bottle contains spirit and water in the ratio $4: 1$. In what ratio should the mixtures in the two bottles be mixed to get a new mixture in which the ratio of spirit to water is $1: 3$?
(a) $5: 1$
(b) $6: 1$
(c) $10: 1$
(d) $11: 1$
7. If $3 \sin \theta+5 \cos \theta=5$, then what is the value of $5 \sin \theta-3 \cos \theta$?
(a) - 3

(b) $-2^{\text {n }}$
 55: Crac
 (c) 5

(d) 8
33. Consider the following in respect of the polynomial $\mathrm{x}^{4 \mathrm{k}}+\mathrm{x}^{4 \mathrm{k}+2}+\mathrm{x}^{4 \mathrm{k}+4}+\mathrm{x}^{4 \mathrm{k}+6}$:

1. The remainder is zero when the polynomial is divided by $\mathrm{x}^{2}+1$.
2. The remainder is zero when the polynomial is divided by $\mathrm{x}^{4}+1$.

Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
34. What is the minimum value of $\frac{\sin ^{2} A+5 \sin A+1}{\sin A}$ for $0<A \leq \frac{\pi}{2}$?
(a) 3
(b) 5
(c) 7
(d) 9
35. What is $\frac{3}{1^{2} \times 2^{2}}+\frac{5}{2^{2} \times 3^{2}}+\frac{7}{3^{2} \times 4^{2}}+\ldots$ equal to ?
(a) 1
(b) 4
(c) 7
(d) 9
36. If $\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}}=\frac{421}{972}$, then what is the value of $a \times b \times c \times d \times e$?
(a) 720
(b) 480
(c) 360
(d) 60
37. A cube whose edge is 14 cm long has on each of its faces a circle of 7 cm radius painted yellow. What is the total area of unpainted surface? (Take $\pi=\frac{22}{7}$)
(a) 126 square cm
(b) 189 square cm
(c) 252 square cm
(d) 315 square cm
38. From a circular metal plate of radius 7 cm and thickness 0.16 mm , a sector is cut off containing an angle 150°. The remaining piece is moulded into a spherical bead of radius r . What is the value of r in cm ?
(a) 0.35
(b) 0.7
(c) 1.05
(d) 1.4
39. The chord $A B$ of a circle with centre at O is $2 \sqrt{3}$ times the height of the minor segment. If P is the area of the sector $O A B$ and Q is the area of the minor segment of the circle, then what is the approximate value of $\frac{P}{Q}$?
(Take $\sqrt{3}=1.7$ and $\pi=3.14$)

55:C(a) 1.4

(b) 1.7
(c) $\quad 2 \cdot 2$
(d) $2 \cdot 6$
40. What is the area of the region between two concentric circles, if the length of a chord of the outer circle touching the inner circle at a particular point of its circumference is 14 cm ? (Take $\pi=\frac{22}{7}$)
(a) 154 square cm
(b) 144 square cm
(c) 132 square cm
(d) Cannot be determined due to insufficient data
41. In a right-angled triangle $\mathrm{ABC}, \mathrm{AB}=15 \mathrm{~cm}$, $\mathrm{BC}=20 \mathrm{~cm}$ and $\mathrm{AC}=25 \mathrm{~cm}$. Further, BP is the perpendicular on AC. What is the difference in the area of triangles PAB and PCB ?
(a) 40 square cm
(b) 42 square cm
(c) 45 square cm
(d) 48 square cm
42. Let the positive numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{3 n}$ be in GP. If P is the GM of $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ and Q is the GM of $a_{n+1}, a_{n+2}, a_{n+3}, \ldots, a_{3 n}$, then what is the GM of $3 n$ numbers?
(a) $\mathrm{P}^{2} \mathrm{Q}$
(b) PQ^{2}
(c) $\sqrt{\mathrm{PQ}}$
(d) $\quad \mathrm{P}^{1 / 3} \mathrm{Q}^{2 / 3}$
43. The cost price of y articles is equal to selling price of z articles. If $y: z=5: 4$, what is the profit percentage?
(a) 20%
(b) 25%
(c) 30%
(d) $\mathbf{4 0 \%}$
44. A sum of money invested at simple interest triples itself in 8 years and becomes n times in 20 years. What is the value of n ?
(a) 5
(b) 6
(c) 7.5
(d) 9
45. If the work done by x men in $(x+1)$ days is equal to the work done by $(x+5)$ men in $(x-2)$ days, then what is the value of x ?
(a) 5
(b) 6
(c) 7
(d) 8
46.:If $(a+b):(b+c):(c+a)=5: 7: 6$, then what is the value of $(a-b+c):(a+b-c)$?
(a) $1: 1$
(b) $2: 3$
(c) $3: 1$
(d) $4: 3$
47. Let x be the compound interest at the end of 3 years on a sum of $₹ 1000$ at the rate of 10% compounded annually and y be the simple interest at the end of 3 years on a sum of $₹ 1000$ at the annual rate of 11%. What is the difference between x and y ?
(a) ₹ 16
(b) ₹ 15
(c) ₹ 5
(d) ₹ 1
48. In a quadrilateral $\mathrm{ABCD}, \mathrm{AB}=6 \mathrm{~cm}$, $\mathrm{BC}=18 \mathrm{~cm}, \mathrm{CD}=6 \mathrm{~cm}$ and $\mathrm{DA}=10 \mathrm{~cm}$. If the diagonal $\mathrm{BD}=\mathrm{x}$, then which one of the following is correct ?
(a) $8<x<12$
(b) $12<x<16$
(c) $16<x<18$
(d) $18<x<20$
49. In a quarter circle of radius R, a circle of radius r is inscribed. What is the ratio of R to r ?
(a) $(\sqrt{2}+1): 1$
(b) $(\sqrt{3}+1): 1$
(c) $3: 2$
(d) $5: 4$
50. In a quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{BC}$ and $\mathrm{CD}=\mathrm{DA} ; \mathrm{AC}$ and BD are diagonals such that $\mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BD}=12 \mathrm{~cm}$. What is the area of the quadrilateral?
(a) 24 square cm
(b) 30 square cm
(c) 36 square cm
(d) 40 square cm
51. If $\tan (3 A)=\cot \left(A-22^{\circ}\right)$, where $3 A$ is an acute angle, then what is the value of A ?
(a) 25°
(b) 27°
(c) 28°
(d) 30°
52. If $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=p \sec \theta+q \tan \theta$,
where $0<\theta<\frac{\pi}{2}$, then what is $\mathrm{p}+\mathrm{q}$ equal to?
(a) 0
(b) 1
(c) 2
(d) 4
53. The angles of elevation of the top of a tower from two points A and B at a distance of x m and $(x+5) m$ from the base of the tower of height 6 m and in the same straight line with it are complementary. What is the value of x ?
5.5 it are com $_{\text {(a) }}^{\text {(a) }} 4 \mathrm{~m}$
(b) 5 m
(c) 6 m
(d) 9 m
54. Consider the following statements :

1. In a triangle $A B C$, if
$\sin A+\sin B+\sin C=\frac{3 \sqrt{3}}{2}$, then the triangle can be equilateral.
2. In a triangle ABC , if
$\cos A+\cos B+\cos C=\frac{3}{2}$, then the triangle can be equilateral.
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
3. Two trains A and B leave Delhi for Hyderabad at 7:00 a.m. and 7:50 a.m. on the same day and travel at 80 kmph and 100 kmph respectively. After how many kilometers from Delhi will the two trains be together ?
(a) $\frac{200}{3} \mathrm{~km}$
(b) 100 km
(c) $\frac{400}{3} \mathrm{~km}$
(d) $\frac{1000}{3} \mathrm{~km}$
4. The length, breadth and height of a cuboid are increased by $10 \%, 20 \%$ and 50% respectively. What is the percentage increase in volume of the cuboid?
(a) 100%
(b) 99%
(c) $\mathbf{9 8 \%}$
(d) 50%
5. ₹ 9400 is distributed among P, Q, R in such a way that if ₹ 93 , ₹ 24 , ₹ 55 are deducted from their respective shares, then they have money in the ratio $3: 4: 5$. What is the share of P ?
(a) ₹ 2307
(b) ₹ 2376
(c) ₹ 2508
(d) ₹ 2896
6. If P^{2} varies as R and Q^{2} varies as $R,(P \neq Q)$, then which of the following are correct ?
7. $\mathrm{P}^{2}+\mathrm{Q}^{2}$ varies as R .
8. $P Q$ varies as R.
9. $\mathrm{P}^{2}-\mathrm{Q}^{2}$ varies as R .

Select the correct answer using the code given below :
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1, 2 and 3
59. p number of men can finish a piece of work in q days. If there are 50% more men, then the work will be finished 12 days earlier. What is 55 : the yalue of q ?
(a) 48
(b) 40
(c) 36
(d) Cannot be determined due to insufficient data
60. What is the minimum value of $\left(\frac{a^{2}+3 a+1}{a}\right)$ $\left(\frac{\mathrm{b}^{2}+3 \mathrm{~b}+1}{\mathrm{~b}}\right)$ for $\mathrm{a}, \mathrm{b}>0$?
(a) 1
(b) 9
(c) 16
(d) 25

Consider the following for the next ten (10) items that follow:

Each item contains a Question followed by two Statements. Answer each item using the following instructions :

Choose option
(a) If the Question can be answered by one of the Statements alone, but not by the other.
(b) If the Question can be answered by either Statement alone.
(c) If the Question can be answered by using both the Statements together, but cannot be answered by using either Statement alone.
(d) If the Question cannot be answered even by using both Statements together.
61. Let a, b, c and d be positive integers.

Question: Which one of a, b, c, d is closest to the product abcd?

Statement-I: $\quad \mathrm{a}>\mathrm{b}>\mathrm{c}$
Statement-II : c is not the smallest.
62. Let $m n=k$, where m and n are prime numbers and k is an even number.

Question: What is the value of $\mathrm{mn}-\mathrm{n}+1$?

Statement-I: $\mathrm{m}>\mathrm{n}$
Statement-II: One of the numbers is 2.
63. Question: If p is a positive integer, then what is the remainder when p^{n} is divided by $p+1$?

Statement-I: n is even.
Statement-II: p is even.
64. Question: Is xy positive?

Statement-I: $\quad \mathrm{x}=\sqrt[3]{-0.19683}$
Statement-II: $y=\sqrt[3]{\mathrm{x}}$
65. Let a, b and c be the sides of a triangle $A B C$.

Question: Is the triangle equilateral?
Statement-I: $\quad a^{2}+b^{2}+c^{2}=(a b+b c+c a)$
Statement-II: $\quad 3 \mathrm{a}^{2}+3 \mathrm{~b}^{2}+4 \mathrm{c}^{2}=2 \mathrm{ab}+4 \mathrm{bc}+4 \mathrm{ca}$
66. Area of a rectangle with length x and breadth y is P and area of a parallelogram (which is strictly not a rectangle) with adjacent sides of length x and y is Q. 5510rac

Question: \quad Is $\mathrm{P}>\mathrm{Q}$?
Statement-I: $\quad \mathrm{x}: \mathrm{y}=2: 1$

Statement-II: The angle between the two adjacent sides of the parallelogram is 60°.
67. A circle touches all the four sides $A B, B C, C D$, $D A$ of a quadrilateral $A B C D$.

Question: What is the perimeter of the quadrilateral?

Statement-I: $\quad \mathrm{AB}+\mathrm{DC}=10 \mathrm{~cm}$

Statement-II: $\mathrm{AD}+\mathrm{BC}=10 \mathrm{~cm}$
68. Question: What is the ratio of the lengths of diagonals of a rhombus?

Statement-I: One diagonal of the rhombus is equal to its side.

Statement-II: The longer diagonal of the rhombus is equal to $\sqrt{3}$ times its side.
69. The chord of a circle of radius R touches at a point on the circumference of a concentric circle of radius r. The length of the chord is 24 units.

Question: What are the values of r and R ?

Statement-I: r is an integer.
Statement-II: R is an integer.
70. P, Q, R, S are the mid-points of sides $A B, B C$, $C D, D A$ respectively of a quadrilateral $A B C D$. Question: What is the difference in the area of the quadrilateral $A B C D$ and the area of the quadrilateral PQRS ?

Statement-I: Area of the quadrilateral $A B C D$ is 100 square unit.

Statement-II : Area of the quadrilateral PQRS is 50 square unit.

Consider the following for the next two (02) items that follow:
In a pie-diagram (with radius 7 cm), the central angles of the sectors are in the ratio $2: 3: 7: 5: 1$. (Take $\pi=\frac{22}{7}$)
71. If P is the area of the smallest sector and Q is the area of the largest sector, then what is $P+Q$ equal to ?
(a) $\frac{88}{3}$ square cm
(b) $\frac{77}{3}$ square cm
(c) $\frac{149}{6}$ square cm
(d) $\frac{616}{9}$ square cm
72. If p is the perimeter of the smallest sector, then what is the value of $9 p$?
(a) 142 cm

55(b) 148 cm
(c) 156 cm
(d) 221 cm

Consider the following for the next three (03) items that follow:
Two trains A and B started from stations P and Q respectively towards each other. Train A started at 7 p.m. at a speed of $60 \mathrm{~km} / \mathrm{hr}$ and train B started at $4 \mathrm{a} . \mathrm{m}$. (next day) at a speed of $90 \mathrm{~km} / \mathrm{hr}$. The distance between the two stations P and Q is 800 km .
73. How far from station Q will the two trains meet?
(a) 104 km
(b) 144 km
(c) 156 km
(d) 504 km
74. At what time will the two trains meet?
(a) 5:28 a.m.
(b) 5:44 a.m.
(c) 4:56 a.m.
(d) 6:24 a.m.
75. If the lengths of the two trains A and B are 400 m and 500 m respectively, then what is the time taken by them to cross each other?
(a) $21 \cdot 6$ seconds
(b) $18 \cdot 2$ seconds
(c) $17 \cdot 4$ seconds
(d) $15 \cdot 4$ seconds

Consider the following for the next three (03) items that follow :

A triangle CEF is drawn inside a square $A B C D$ as shown in the figure given below. Given : $C F=8 \mathrm{~cm}$, $\mathrm{EF}=6 \mathrm{~cm}$ and $\mathrm{CE}=10 \mathrm{~cm}$.

B
76. What is the area of the square?
(a) $\frac{512}{17}$ square cm
(b) $\frac{625}{13}$ square cm
(c) $\frac{1024}{17}$ square cm
(d) $\frac{1296}{13}$ square cm
77. What is $\tan \alpha+\tan \beta$ equal to?
(a) $\frac{13}{16}$
(b) $\frac{15}{16}$
$\frac{55 \text { :Crock }}{\text { (c) } \frac{17}{16}}$
(d) $\frac{17}{4}$
78. What is the area of triangle CDE ?
(a) $\frac{416}{17}$ square cm
(b) $\frac{312}{13}$ square cm
(c) $\frac{208}{17}$ square cm
(d) $\frac{156}{13}$ square cm
 that fullown

70. What is the area of the ahaded region?
(a) 3 B 5 F aquare cm
(b) 4 A square em
(c) 52.5 aqmate em
(d) 665 square cm
80. What is the ratio of the aren of the ahaded region to the area of the non-ahaded region?
(B) $\frac{10}{25}$
(b) $\frac{1 \mathrm{H}}{25}$
(c) $\frac{17}{25}$
(d) $\frac{16}{26}$
that followel

 interaceltons of Ith and ein

B1. What in the longth of MI?

(c) $\frac{0}{8} \mathrm{~cm}$
(d) $\frac{10}{8} \mathrm{~cm}$
82. What in the ratio of the area of the quadrilateral J'QNM in the area of the quadrilataral ILSNM?
(a) $\frac{200}{117}$
(b) $\frac{212}{117}$
(c) $\frac{276}{117}$
(d) $\frac{250}{117}$

Consider the following for the next three (03) items that follow:

The following Pie-Chart-I shows the people migrating to Delhi from different Indian States (P, Q and R are three different States and S is the combined group of other States) and Pie-Chart-II indicates the different age groups A, B, C and D of these migrating people for each State.

I

83. If the people coming from a particular State belonging to S are 15% and 24,000 in number, then what is the total number of migrating people belonging to the age group B ?
(a) 1.2 lac
(b) 1.25 lac
(c) 1.30 lac
(d) 1.50 lac
84. What is the maximum of differences between the number of people coming from different groups P, Q, R and S ?
(a) 1.6 lac
(b) 1.8 lac
(c) $2 \cdot 4$ lac
(d) $2 \cdot 6 \mathrm{lac}$

Consider the following for the next three (03) items that follow:
ABC is a right-angled triangle with $\angle \mathrm{ABC}=90^{\circ}$. The centre of the incircle of the given triangle is at 0 , whose radius is 2 cm . Two more circles with centres at O_{1} and O_{2}, touch this circle and the two sides as shown in the figure given below.
Further, MA: MC $=2: 3$.

88. What is $\mathrm{AB}+\mathrm{BC}$ equal to ?
(a) 10 cm
(b) 12 cm
(c) 13 cm
(d) 14 cm
89. What is the radius of the circle with centre at O_{1} ?
(a) $4-\sqrt{5}$
(b) $1+\sqrt{5}$
(c) $2+\sqrt{5}$
(d) $3-\sqrt{5}$
90. What is the radius of the circle with centre at O_{2} ?
(a) $5-\sqrt{10}$
(b) $1+2 \sqrt{5}$
(c) $\frac{22-4 \sqrt{10}}{9}$
(d) $\frac{22-2 \sqrt{10}}{9}$

Consider the following for the next three (03) items that follow :

Consider two identical semicircles and one circle inscribed in a rectangle of length 10 cm as shown in the figure given below.
(Take $\pi=3.14$ and $\sqrt{2}=1 \cdot 4$).

A
55: Crack
91. What is the area of triangle EOF ?
(a) $12 \cdot 5 \sqrt{3}$ square cm
(b) $6.25 \sqrt{3}$ square cm
(c) 12.5 square cm
(d) 6.25 square cm
92. What is the area of trapezium AEFB ?
(a) 30 square cm
(b) 25 square cm
(c) 20 square cm
(d) 18.75 square cm
93. What is the area of the shaded region ?
(a) 14.75 square cm
(b) $14 \cdot 25$ square cm
(c) 7.225 square cm
(d) 7.625 square cm

Consider the following for the next two (02) items Consider the following for the next three (03) items that follow:

Consider a circle of area 9π square unit and an equilateral triangle ABC as shown in the figure given below.

94. What is the length of the side of the triangle ABC ?
(a) $2 \sqrt{3}$ unit
(b) $4 \sqrt{3}$ unit
(c) $6 \sqrt{3}$ unit
(d) $8 \sqrt{3}$ unit
95. What is the area of the shaded region?
(a) $6(\pi+\sqrt{3})$ square unit
(b) $3(\pi+2 \sqrt{3})$ square unit
(c) $1 \cdot 5(3 \pi+8 \sqrt{3})$ square unit
(d) $6(\pi+2 \sqrt{3})$ square unit
that follow :

Two circles with centres at O_{1} and O_{2} touching each other are placed inside a rectangle of sides 9 cm and 8 cm as shown in the figure given below.
D

A
96. Shata the sum of the areas of the two circles ?
(a) 17π square unit
(b) $16 \cdot 75 \pi$ square unit
(c) 16.5π square unit
(d) $16 \cdot 25 \pi$ square unit
97. Which one of the following is correct in respect of angle θ ?
(a) $0<\theta<30^{\circ}$
(b) $30^{\circ}<\theta<45^{\circ}$
(c) $45^{\circ}<\theta<60^{\circ}$
(d) $60^{\circ}<\theta<90^{\circ}$
98. What is the area of the shaded region?
(a) $\frac{240-10 \pi-\pi \theta}{24}$ square unit
(b) $\frac{240-6 \pi-\pi \theta}{24}$ square unit
(c) $\frac{120-12 \pi-\pi \theta}{24}$ square unit
(d) $\frac{240-12 \pi-\pi \theta}{24}$ square unit

Consider the following for the next two (02) items that follow :

Let $A B C D$ be the diameter of a circle of radius 6 cm . The lengths AB, BC and CD are equal. Semi-circles are drawn with AB and BD as diameters as shown in the figure given below.

99. What is the ratio of the area of the shaded region to that of the non-shaded region?
(a) $2: 7$
(b) $2: 5$
(c) $3: 5$
(d) $5: 8$

100. What is the perimeter of the shaded region?
(a) $24 \pi \mathrm{~cm}$
(b) $18 \pi \mathrm{~cm}$
(c) $15 \pi \mathrm{~cm}$
(d) $12 \pi \mathrm{~cm}$

